Transit-Amplifying Cells Orchestrate Stem Cell Activity and Tissue Regeneration
نویسندگان
چکیده
Transit-amplifying cells (TACs) are an early intermediate in tissue regeneration. Here, using hair follicles (HFs) as a paradigm, we show that emerging TACs constitute a signaling center that orchestrates tissue growth. Whereas primed stem cells (SCs) generate TACs, quiescent SCs only proliferate after TACs form and begin expressing Sonic Hedgehog (SHH). TAC generation is independent of autocrine SHH, but the TAC pool wanes if they can't produce SHH. We trace this paradox to two direct actions of SHH: promoting quiescent-SC proliferation and regulating dermal factors that stoke TAC expansion. Ingrained within quiescent SCs' special sensitivity to SHH signaling is their high expression of GAS1. Without sufficient input from quiescent SCs, replenishment of primed SCs for the next hair cycle is compromised, delaying regeneration and eventually leading to regeneration failure. Our findings unveil TACs as transient but indispensable integrators of SC niche components and reveal an intriguing interdependency of primed and quiescent SC populations on tissue regeneration.
منابع مشابه
Regeneration of male germline stem cells by spermatogonial dedifferentiation in vivo.
Although the ability of engrafted stem cells to regenerate tissue has received much attention, the molecular mechanisms controlling regeneration are poorly understood. In the Drosophila male germline, local activation of the Janus kinase-signal transducer and activator of transcription (Jak-STAT) pathway maintains stem cells; germline stem cells lacking Jak-STAT signaling differentiate into spe...
متن کاملExtensive tissue-regenerative capacity of neonatal human keratinocyte stem cells and their progeny.
Given our recent discovery that it is possible to separate human epidermal stem cells of the skin from their more committed progeny (i.e., transit-amplifying cells and early differentiating cells) using FACS techniques, we sought to determine the comparative tissue regeneration ability of these keratinocyte progenitors. We demonstrate that the ability to regenerate a fully stratified epidermis ...
متن کاملA transit-amplifying population underpins the efficient regenerative capacity of the testis
The spermatogonial stem cell (SSC) that supports spermatogenesis throughout adult life resides within the GFRα1-expressing A type undifferentiated spermatogonia. The decision to commit to spermatogenic differentiation coincides with the loss of GFRα1 and reciprocal gain of Ngn3 (Neurog3) expression. Through the analysis of the piRNA factor Miwi2 (Piwil4), we identify a novel population of Ngn3-...
متن کاملStem Cells in Regenerative Endodontics
Background Currently, clinical endodontics includes procedures that are based on the ability of stem cells to accomplish repair (eg, direct pulp capping, apexogenesis, apexification, and even pulpal regeneration). An attempt is made to critically assess the current status in pulp regeneration therapy. Methods: Systematically, 2 distinctly different strategies exist involving stem cells for t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 157 شماره
صفحات -
تاریخ انتشار 2014